
Python Notes By : Hiral Pandya Page : 1 of 16

OOP Using Python
 Handling Exceptions :

An exception is an error that happens during execution of a program. When
that error occurs, Python generate an exception that can be handled, which avoids program
to crash. Exceptions are convenient in many ways for handling errors and special conditions
in a program. When you think that you have a code which can produce an error then
exception handling can be used. An exception can be raised in program by using the
“raise exception” statement. Raising an exception breaks current code execution
and returns the exception back until it is handled.

Syntax :
try:

some statements here

except:

exception handling statements

Example Out Put

try:

i = int(input("Enter Value : "))

print ("Square of ",i, " is : ",i *
i);

except:

print ("Oops....Invalid Input!!!!")

Enter Value : 8
Square of 8 is : 64

Enter Value : a
Oops....Invalid Input!!!!

 Exceptions as a control flow mechanism :

There’s one other form of flow control that is common within Python, exception

handling. One thing that differs compared to many other languages is that in Python

exceptions are relatively lightweight. This means they aren’t only meant to be used in the

most extreme circumstances; instead it is not uncommon to use them as a type of control

flow.

It is also possible to have two more clauses in a try-except block. “else” is called

if no exception was caught. “finally” is caused no matter what, and is useful for cleaning up

resources.

Python Notes By : Hiral Pandya Page : 2 of 16

• Common Exceptions :

Exception Description

BaseException The base exception, catching this will catch all exceptions.

Exception
The lowest-level non-system exiting exception. Typically this is
the lowest level exception you’d want to catch.

AttributeError
Raised when attempting to access an attribute of an object
that doesn’t exist.

ImportError Raised when something cannot be imported.

IndexError Raised when a sequence index is out of range.

KeyError
Raised when trying to access a dictionary key that does not
exist.

StopIteration Raised when an iterable is exhausted.

TypeError Raised when an operation is invalid for a specific type.

ValueError
Raised when a function receives a value of an appropriate
type but inappropriate value.

ZeroDivisionError Raised when attempting to divide by zero.

Example Out Put

try:

i = int(input("Enter 1st Value : "))

j = int(input("Enter 2nd Value : "))

k = i / j

except ZeroDivisionError:

print("Invalid Second Value")

except :
print("Invalid Input!!!")

else :

print (i, "/", j, " = " ,k);

finally:

print ("Thanks!!!!")

Enter 1st Value : 5
Enter 2nd Value : 2
5 / 2 = 2.5
Thanks!!!!

Enter 1st Value : 5
Enter 2nd Value : 0
Invalid Second Value

Thanks!!!!

Enter 1st Value : a
Invalid Input

Thanks!!!!

Python Notes By : Hiral Pandya Page : 3 of 16

 Assertions :

• What is Assertion? : Assertions are statements that assert or state a fact confidently in
python program. For example, while writing a division function, divisor shouldn't be
zero, programmers assert divisor is not equal to zero. Assertions are simply Boolean
expressions that checks if the conditions return true or not. If it is true, the program
does nothing and moves to the next line of code. However, if it's false, the program
stops and throws an error. It is also a debugging tool as it brings the program on halt as
soon as any error is occurred and shows on which point of the program error has
occurred.

• So, Assertions are the condition or boolean expression which are always supposed to
be true in the code. Assert statement takes an expression and optional message. Assert
statement is used to check types, values of argument and the output of the function.
Assert statement is used as debugging tool as it halts the program at the point where an
error occurs.

Syntax :
assert <condition>,<error message>

Example Out Put

i = int(input("Enter 1st Value : "))

j = int(input("Enter 2nd Value : "))

assert j != 0, "Invalid Second Value."

print (i,"/",j," = ",i/j)

Enter 1st Value : 5
Enter 2nd Value : 2
5 / 2 = 2.5

Enter 1st Value : 5
Enter 2nd Value : 0

Traceback (most recent
call last):

File "C:/ assert.py",
line 3, in <module>

assert j != 0,

"Invalid Second Value."
AssertionError: Invalid
Second Value.

Python Notes By : Hiral Pandya Page : 4 of 16

 Abstract Data Types and Classes :

Abstraction is one of the most powerful ideas in computer science. It separates
“The What from The How”. Abstraction provides modularity. Classes are the Python
representation for “Abstract Data Types” (ADT) a very useful notion in any programming
language. An ADT involves both data and operations on that data.

Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined
by a set of value and a set of operations.

The definition of ADT only mentions what operations are to be performed but
not how these operations will be implemented. It does not specify how data will be
organized in memory and what algorithms will be used for implementing the operations. It
is called “abstract” because it gives an implementation independent view. The process of
providing only the essentials and hiding the details is known as abstraction.

The user of data type need not know that data type is implemented, for
example, we have been using int, float, char data types only with the knowledge
with values that can take and operations that can be performed on them without any idea
of how these types are implemented. So a user only needs to know what a data type can do
but not how it will do it. We can think of ADT as a black box which hides the inner structure
and design of the data type. LIST and Dictionary are best example of ADT.

In object oriented programming, an abstract class is like a normal

class that cannot be instantiated. It's a way for the class designer to provide a blueprint
of a class, so that its’ methods have to be implemented by the developer writing a class that
inherits from it.

• CLASSES in Python :

Python is an object oriented programming language. Unlike
procedure oriented programming, where the main emphasis is on functions, object
oriented programming stress on objects. Object is simply a collection of data (variables)
and methods (functions) that act on those data. And, class is a blueprint for the object.

We can think of class as a sketch (prototype) of a house. It
contains all the details about the floors, doors, windows etc. Based on these
descriptions we build the house. House is the object. As, many houses can be made
from a description, we can create many objects from a class. An object is also called an
instance of a class and the process of creating this object is called instantiation.

 Defining a CLASS in Python :
Like function definitions begin with the keyword def, in Python,

we define a class using the keyword class. The first string is called docstring and has
a brief description about the class. Although not mandatory, this is recommended.

A class creates a new local namespace where all its attributes are
defined. Attributes may be data or functions. There are also special attributes in it
that begins with double underscores (__). For example, __doc__ gives us the
docstring of that class. As soon as we define a class, a new class object is created
with the same name. This class object allows us to access the different attributes as
well as to instantiate new objects of that class.

Python Notes By : Hiral Pandya Page : 5 of 16

Syntax :
Class myClass:

“This is a docstring.”
##Class Members

Example
class MyClass:

"This is my First class"
a = 100
def func(self):

print("Hello From Function in Class")
print("Value of Class Variable a = ",MyClass.a)
print(MyClass.func)
print(MyClass.__doc__)
##Create object of a Class and call Class Function

myObj = MyClass()

myObj.func()

Out Put

Value of Class Variable a = 100

<function MyClass.func at 0x00000000004BC1E0>

This is my First class

Hello From Function in Class

 Constructors in Python :

A class function that begins with double underscore (__) is called
special function as they have special meaning. One particular interest is the __init__()
function. This special function gets called whenever a new object of that class is
instantiated. This type of function is also called constructors in Object Oriented
Programming (OOP). We normally use it to initialize all the variables.

Example
class Employee:

def __init__(self,name,id):
self.id = id;
self.name = name;

def display (self):
print("ID:",self.id,"\nName:",self.name)

emp1 = Employee("ABC",101)
emp2 = Employee("PQR",102)

#accessing display() method to print employee 1 information
emp1.display();

#accessing display() method to print employee 2 information
emp2.display();

Out Put

ID: 101
Name: ABC
ID: 102
Name: PQR

Python Notes By : Hiral Pandya Page : 6 of 16

 Deleting Attributes or Object of Class:

Any attribute of an object can be deleted anytime, using the “del” statement. It is a kind
of destructor in python.

Example
class Employee:

def __init__(self,name,id):
self.id = id;
self.name = name;

def display (self):
print("ID:",self.id,"\nName:",self.name)

emp1 = Employee("ABC",101)
emp2 = Employee("PQR",102)

#accessing display() method to print employee 1 information

emp1.display()
#accessing display() method to print employee 2 information

emp2.display()

del emp1
emp1.display()

Out Put

ID: 101

Name: ABC

ID: 102

Name: PQR

Traceback (most recent call last):

File "C:\01.py", line 17, in <module>

emp1.display()
NameError: name 'emp1' is not defined

 Inheritance in Python :

Inheritance is one of the mechanisms to achieve the same. In inheritance, a
class (usually called superclass) is inherited by another class (usually called subclass). The
subclass adds some attributes to superclass. Below is a sample Python program to show
how inheritance is implemented in Python.

A class can inherit attributes and behavior methods from another class,
called the superclass. A class which inherits from a superclass is called a subclass, also called
heir class or child class. Superclasses are sometimes called ancestors as well. There exists a
hierarchy relationship between classes.

Syntax :

class BaseClass:

Body of base class

class DerivedClass(BaseClass):

Body of derived class

Python Notes By : Hiral Pandya Page : 7 of 16

Example
class Person:

def __init__(self, first, last):

self.firstname = first

self.lastname = last

def Name(self):
return "Name: "+self.firstname + " " + self.lastname

class Employee(Person):

def __init__(self, first, last, staffnum):

Person.__init__(self,first, last)

self.staffnumber = staffnum

def GetEmployee(self):
return self.Name() + ", \nEmployee ID:" + self.staffnumber

x = Person("FName", "LName")

y = Employee("FName", "LName", "101")

print(x.Name())
print(y.GetEmployee())

Out Put

Name: FName LName

Name: FName LName,

Employee ID:101

 Encapsulation and Information hiding :

The terms encapsulation and abstraction (also data hiding) are often
used as synonyms. They are nearly synonymous, i.e. abstraction is achieved though
encapsulation. Data hiding and encapsulation are the same concept, so it's correct to use
them as synonyms.

Encapsulation is the mechanism for restricting the access to some of an
object's components; this means that the internal representation of an object can't be seen
from outside of the objects definition. Access to this data is typically only achieved through
special methods: Getters and Setters. By using solely get() and set() methods, we can
make sure that the internal data cannot be accidentally set into an inconsistent or invalid
state.

Using OOP in Python, we can restrict access to methods and variables.
This prevent data from direct modification which is called encapsulation. In Python, Private
attributes denoted using underscore as prefix i.e single “ _ “ or double “ __“.

Python Notes By : Hiral Pandya Page : 8 of 16

Example

class Person:
def __init__(self):

self.name = 'Mr. ABC'
self.__lastname = 'PQR'

def PrintName(self):
return self.name +' ' + self.__lastname

#Outside class
P = Person()

print("Full Name:",P.PrintName())

print("First Name:",P.name)

#AttributeError: 'Person' object has no attribute '__lastname'
print("Last Name:",P.__lastname)

Out Put

Full Name: Mr. ABC PQR

First Name: Mr. ABC

Traceback (most recent call last):

File "C:\ Encapsulation.py", line 14, in <module>

print("Last Name:",P.__lastname)
AttributeError: 'Person' object has no attribute '__lastname'

 Search Algorithms in Python :

Searching is a very basic necessity when you store data in different data
structures. The simplest approach is to go across every element in the data structure and
match it with the value you are searching for. This is known as “Linear Search”. It is
inefficient and rarely used, but creating a program for it gives an idea about how we can
implement some advanced search algorithms.

Basically there are two types of Searching Algorithms in Python.

1. Linear Search 2. Interpolation Search

1. Linear Search :

In this type of search, a sequential search is made over all items one by
one. Every item is checked and if a match is found then that particular item is returned,
otherwise the search continues till the end of the data structure.

This technique iterates over the sequence, one item at a time, until the
specific item is found or all items have been examined. In Python, a target item can be
found in a sequence using the in operator.

Python Notes By : Hiral Pandya Page : 9 of 16

Example

def myLinearSearch(arr, n, x):
for i in range (0, n):

if (arr[i] == x):
return i;

return -1;
arr = [10, 20, 30, 40, 50];
print("Values : ",arr)
result = myLinearSearch(arr, len(arr), int(input("Enter Value: ")))
if(result == -1):

print("Element is not present in this Array")
else:

print("Element is present at index: ", result);

Out Put

Values : [10, 20, 30, 40, 50]
Enter Value: 20
Element is present at index: 1

Values : [10, 20, 30, 40, 50]
Enter Value: 200
Element is not present in this Array

2. Interpolation Search :

This search algorithm works on the probing position of the required

value. For this algorithm to work properly, the data collection should be in a sorted form

and equally distributed. Initially, the probe position is the position of the middle most

item of the collection. If a match occurs, then the index of the item is returned. If the

middle item is greater than the item, then the probe position is again calculated in the

sub-array to the right of the middle item. Otherwise, the item is searched in the subarray

to the left of the middle item. This process continues on the sub-array as well until the

size of subarray reduces to zero.

The Interpolation Search is an improvement over Binary Search for

instances, where the values in a sorted array are uniformly distributed. Binary Search

always goes to the middle element to check. On the other hand, interpolation search

may go to different locations according to the value of the key being searched. For

example, if the value of the key is closer to the last element, interpolation search is likely

to start search toward the end side.

Python Notes By : Hiral Pandya Page : 10 of 16

Example

If x is present in arr[0..n-1], then returns

index of it, else returns -1

def interpolationSearch(arr, n, x):

Find indexs of two corners

lo = 0

hi = (n - 1)

Since array is sorted, an element present

in array must be in range defined by corner

while lo <= hi and x >= arr[lo] and x <= arr[hi]:

Probing the position with keeping

uniform distribution in mind.

pos = lo + int(((float(hi - lo) /

(arr[hi] - arr[lo])) * (x - arr[lo])))

Condition of target found

if arr[pos] == x:

return pos

If x is larger, x is in upper part

if arr[pos] < x:

lo = pos + 1;

If x is smaller, x is in lower part

else:

hi = pos - 1;

return -1

Array of items in which search will be conducted

arr = [10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47]

print("Values : ",arr)

index = interpolationSearch(arr, len(arr), int(input("Enter Value: ")))

if index != -1:

print ("Element found at index :", index)

else:

print ("Element not found")

Out Put

Values : [10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47]
Enter Value: 16

Element found at index : 3

Values : [10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 24, 33, 35, 42, 47]
Enter Value: 50
Element not found

Python Notes By : Hiral Pandya Page : 11 of 16

 Sorting Algorithms in Python :

Sorting refers to arranging data in a particular format. Sorting algorithm specifies
the way to arrange data in a particular order. Most common orders are in numerical or
lexicographical order. The importance of sorting lies in the fact that data searching can be
optimized to a very high level, if data is stored in a sorted manner. Sorting is also used to
represent data in more readable formats.

A Sorting Algorithm is used to rearrange a given array or list elements according
to a comparison operator on the elements. The comparison operator is used to decide the
new order of element in the respective data structure.

There are FIVE sorting algorithms in python.

1. Bubble Sort 2. Merge Sort 3. Insertion Sort

4. Shell Sort 5. Selection Sort

1. Bubble Sort :
It is a comparison-based algorithm in which each pair of adjacent elements

is compared and the elements are swapped if they are not in order. So, Bubble Sort is the
simplest sorting algorithm that works by repeatedly swapping the adjacent elements if
they are in wrong order.

Logical Example :

First Pass:

(5 1 4 2 8) –> (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.

(1 5 4 2 8) –> (1 4 5 2 8), Swap since 5 > 4

(1 4 5 2 8) –> (1 4 2 5 8), Swap since 5 > 2

Now, since these elements are already in order (8 > 5), algorithm does not swap them.

(1 4 2 5 8) –> (1 4 2 5 8),

Second Pass:

(1 4 2 5 8) –> (1 4 2 5 8)

(1 4 2 5 8) –> (1 2 4 5 8), Swap since 4 > 2

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Now, the array is already sorted, but our algorithm does not know if it is completed. The
algorithm needs one whole pass without any swap to know it is sorted.

Third Pass:

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

(1 2 4 5 8) –> (1 2 4 5 8)

Python Notes By : Hiral Pandya Page : 12 of 16

Example

def bubblesort(list):

Swap the elements to arrange in order

for iter_num in range(len(list)-1,0,-1):

for idx in range(iter_num):

if list[idx]>list[idx+1]:

temp = list[idx]

list[idx] = list[idx+1]

list[idx+1] = temp

list = [19,12,31,45,16,14,120,29]

print("\nBefore Sorting :\n",list)

bubblesort(list)

print("\nAfter Sorting :\n",list)

Out Put

Before Sorting :

[19, 12, 31, 45, 16, 14, 120, 29]

After Sorting :

[12, 14, 16, 19, 29, 31, 45, 120]

2. Merge Sort :

Merge Sort is a Divide and Conquer algorithm. It divides input array in two
halves, calls itself for the two halves and then merges the two sorted halves. The
merge() function is used for merging two halves. The merge(arr, l, m, r) is
key process that assumes that arr[l..m] and arr[m+1..r] are sorted and
merges the two sorted sub-arrays into one. So, Merge sort first divides the array into
equal halves and then combines them in a sorted manner.

Example

def merge_sort(unsorted_list):

if len(unsorted_list) <= 1:

return unsorted_list

Find the middle point and devide it

middle = len(unsorted_list) // 2

left_list = unsorted_list[:middle]

right_list = unsorted_list[middle:]

left_list = merge_sort(left_list)

right_list = merge_sort(right_list)

return list(merge(left_list, right_list))

Python Notes By : Hiral Pandya Page : 13 of 16

Merge the sorted halves
def merge(left_half,right_half):

res = []
while len(left_half) != 0 and len(right_half) != 0:

if left_half[0] < right_half[0]:
res.append(left_half[0])
left_half.remove(left_half[0])

else:
res.append(right_half[0])
right_half.remove(right_half[0])

if len(left_half) == 0:
res = res + right_half

else:
res = res + left_half

return res

unsorted_list = [19,12,31,45,16,14,120,29]

print("\nBefore Sorting :\n",unsorted_list)

print("\nAfter Sorting :\n",merge_sort(unsorted_list))

Out Put

Before Sorting :

[19, 12, 31, 45, 16, 14, 120, 29]

After Sorting :

[12, 14, 16, 19, 29, 31, 45, 120]

3. Insertion Sort :

Insertion sort involves finding the right place for a given element in a
sorted list. So in beginning it compares the first two elements and sort them by
comparing them. Then picks the third element and find its proper position among the
previous two sorted elements. This gradually goes on adding more elements to the
already sorted list by putting them in their proper position.

Python Notes By : Hiral Pandya Page : 14 of 16

Example
def insertion_sort(InputList):

for i in range(1, len(InputList)):
j = i-1
nxt_element = InputList[i]

Compare the current element with next one

while (InputList[j] > nxt_element) and (j >= 0):
InputList[j+1] = InputList[j]
j=j-1

InputList[j+1] = nxt_element

list = [19,12,31,45,16,14,120,29]
print("\nBefore Sorting :\n",list)

insertion_sort(list)

print("\nAfter Sorting :\n",list)

Out Put

Before Sorting :

[19, 12, 31, 45, 16, 14, 120, 29]

After Sorting :

[12, 14, 16, 19, 29, 31, 45, 120]

4. Shell Sort :
Shell Sort is mainly a variation of Insertion Sort. In insertion sort, we move

elements only one position ahead. When an element has to be moved far ahead, many
movements are involved. The idea of ShellSort is to allow exchange of far items. In
ShellSort, we make the array h-sorted for a large value of h. We keep reducing the value
of h until it becomes 1. An array is said to be h-sorted if all sublists of every h’th element
is sorted.

Example
def shellSort(input_list):

gap = len(input_list) // 2
while gap > 0:

for i in range(gap, len(input_list)):
temp = input_list[i]
j = i

Sort the sub list for this gap

while j >= gap and input_list[j - gap] > temp:
input_list[j] = input_list[j - gap]
j = j-gap

input_list[j] = temp

Reduce the gap for the next element

gap = gap//2
list = [19,12,31,45,16,14,120,29]
print("\nBefore Sorting :\n",list)
shellSort(list)
print("\nAfter Sorting :\n",list)

Python Notes By : Hiral Pandya Page : 15 of 16

Out Put

Before Sorting :

[19, 12, 31, 45, 16, 14, 120, 29]

After Sorting :

[12, 14, 16, 19, 29, 31, 45, 120]

5. Selection Sort :
Selection sort starts by finding the minimum value in a given list and

move it to a sorted list. Then repeat the process for each of the remaining elements in
the unsorted list. The next element entering the sorted list is compared with the existing
elements and placed at its correct position. So at the end all the elements from the
unsorted list are sorted.

Example
list = [19,12,31,45,16,14,120,29]
print("\nBefore Sorting :\n",list)

Pass through all array elements

for i in range(len(list)):

Find the minimum element in remaining
unsorted array

min_idx = i
for j in range(i+1, len(list)):

if list[min_idx] > list[j]:
min_idx = j

Swap the found minimum element with
the first element

list[i], list[min_idx] = list[min_idx], list[i]

print("\nAfter Sorting :\n",list)

Out Put

Before Sorting :

[19, 12, 31, 45, 16, 14, 120, 29]

After Sorting :

[12, 14, 16, 19, 29, 31, 45, 120]

Python Notes By : Hiral Pandya Page : 16 of 16

 Hashtable in Python :

Hash tables are a type of data structure in which the address or the
index value of the data element is generated from a hash function. That makes accessing
the data faster as the index value behaves as a key for the data value. In other words Hash
table stores key-value pairs but the key is generated through a hashing function. So the
search and insertion function of a data element becomes much faster as the key values
themselves become the index of the array which stores the data.

In Python, the Dictionary data types represent the implementation of hash tables.

The Keys in the dictionary satisfy the following requirements.

 The keys of the dictionary are hashable i.e. the are generated by hashing function which
generates unique result for each unique value supplied to the hash function.

 The order of data elements in a dictionary is not fixed.

