

 Python Notes By : Hiral Pandya Page : 1 of 12

Plotting Using PyLab

� Plotting Using PyLab :

PyLab is Python library that gives facilities of MATLAB. MATLAB is high-level

technical computing language and interactive environment for algorithm development, data

visualization, data analysis and numeric computation.

Here is a simple example that uses pylab.plot to generate plot.

Example

import pylab

#Create Figure 1
pylab.figure(1)

#Draw on Figure 1
pylab.plot([1,2,3,4],[1,2,3,4])

#Show Figure on Screen
pylab.show()

Out Put

The above chart is the plot generated by the invocation of pylab.plot. The two parameters

of pylab.plot must be sequence of the same length. The first gives the x-coordinates of the

points to be plotted and the second the y-coordinates. Combination of these two(x,y)

provides of FOUR <x , y> coordinated pairs [(1,1), (2,2), (3,3), (4,4)] .

 Python Notes By : Hiral Pandya Page : 2 of 12

Example : 2

from matplotlib import pyplot as plt

#Plotting to Canvas

plt.plot([1,2,3,4],[4,5,1,3])

#Showing what we plotted
plt.show()

Out Put : 2

FOUR <x , y> coordinated pairs [(1,4), (2,5), (3,1), (4,3)] .

 Python Notes By : Hiral Pandya Page : 3 of 12

Example : 3

import pylab

#Create Figure 1
pylab.figure(1)

#Draw on Figure 1
pylab.plot([1,2,3,4],[1,2,3,4])

#Save Figure 1
pylab.savefig('myFig_01')

#Create Figure 2
pylab.figure(2)

#Draw on Figure 2
pylab.plot([1,2,3,4],[4,5,1,3])

#Save Figure 2
pylab.savefig('myFig_02.pdf')

#Show Figures on Screen
pylab.show()

Out Put : 3

Above code will generate two plots. First plot will be saved as “myFig_01.png” and

Second plot will be saved as “myFig_02.pdf”. Supported formats are : eps, pdf, pgf, png, ps,

raw, rgba, svg, svgz.

 Python Notes By : Hiral Pandya Page : 4 of 12

� Plotting Mortgages :

What is Mortgage? : A mortgage is a debt instrument, secured by the guarantee of

specified property, which the borrower is obliged to pay back with a fixed set of payments.

In Python, Mortgage follows same functionality. Means, one class or object will be debt

(Mortgage) to get some functionality for different objects. Logically Mortgage is “User

Defined Class / Package / Module” that is useful to get or set some other functionality.

Example
'''calculate the monthly payment on a mortgage loan '''
import math
def calc_mortgage(principal, interest, years):
 '''
 given mortgage loan principal, interest(%) and years to pay
 calculate and return monthly payment amount
 '''
 # monthly rate from annual percentage rate
 interest_rate = interest/(100 * 12)

 # total number of payments
 payment_num = years * 12

 # calculate monthly payment
 payment = principal * \
 (interest_rate/(1-math.pow((1+interest_rate), (-payment_num))))
 return payment

mortgage loan principal
principal = 100000

percent annual interest
interest = 7.5

years to pay off mortgage
years = 30

calculate monthly payment amount
monthly_payment = calc_mortgage(principal, interest , years)

calculate total amount paid
total_amount = monthly_payment * years * 12

show result ...
{:,} uses the comma as a thousand separator
sf = '''
For a {} year mortgage loan of Rs.{:,}
at an annual interest rate of {:.2f}%
you pay Rs.{:.2f} monthly'''
print(sf.format(years, principal, interest, monthly _payment))
print('='*50)
print("Total amount paid will be Rs.{:,.2f}".format (total_amount))

Out Put

For a 30 year mortgage loan of Rs.100,000
at an annual interest rate of 7.50%
you pay Rs.699.21 monthly
==
Total amount paid will be Rs.251,717.22

Above example is simple calculation for LOAN payments.

 Python Notes By : Hiral Pandya Page : 5 of 12

Now, Let’s Create our Mortgage Class and other LoanIntrestType Class to extend our Class.

Example : Mortgage base class

def findPayment(loan, r, m):
"""Assumes: loan and r are floats, m an int
Returns the monthly payment for a mortgage of size
loan at a monthly rate of r for m months"""
return loan*((r*(1+r)**m)/((1+r)**m - 1))

class Mortgage(object):
"""Abstract class for building different kinds of m ortgages"""

def __init__(self, loan, annRate, months):

"""Create a new mortgage"""
self.loan = loan
self.rate = annRate/12.0
self.months = months
self.paid = [0.0]
self.owed = [loan]
self.payment = findPayment(loan, self.rate, months)
self.legend = None #description of mortgage

def makePayment(self):

"""Make a payment"""
self.paid.append(self.payment)
reduction = self.payment - self.owed[-1]*self.rate
self.owed.append(self.owed[-1] - reduction)

def getTotalPaid(self):

"""Return the total amount paid so far"""
return sum(self.paid)
def __str__(self):
return self.legend

Looking at __init__ , we see that all Mortgage instances will have instance variables

corresponding to the initial loan amount, the monthly interest rate, the duration of the loan in

months, a list of payments that have been made at the start of each month (the list starts with 0.0,

since no payments have been made at the start of the first month), a list with the balance of the

loan that is outstanding at the start of each month, the amount of money to be paid each month

(initialized using the value returned by the function findPayment), and a description of the mortgage

(which initially has a value of None). The __init__ operation of each subclass of Mortgage is

expected to start by calling Mortgage.__init__ , and then to initialize self.legend to an

appropriate description of that subclass.

The method “makePayment()” is used to record mortgage payments. Part of each payment

covers the amount of interest due on the outstanding loan balance, and the remainder of the

payment is used to reduce the loan balance. That is why “makePayment() ” updates both

self.paid and self.owed .

The method “getTotalPaid()” uses the built-in Python function sum, which returns the sum of

a sequence of numbers. If the sequence contains a non-number, an exception is raised.

 Python Notes By : Hiral Pandya Page : 6 of 12

Example : Fixed - Rate Mortgage classes

class Fixed(Mortgage):

def __init__(self, loan, r, months):
Mortgage.__init__(self, loan, r, months)
self.legend = “Fixed, “ + str(r*100) + “%”

class FixedWithPts(Mortgage):

def __init__(self, loan, r, months, pts):
Mortgage.__init__(self, loan, r, months)
self.pts = pts
self.paid = [loan*(pts/100.0)]
self.legend = “Fixed, “ + str(r*100) + “%, “\ + str(pts) + “ poin ts”

Above Code contains classes implementing two types of mortgage.

Each of these classes overrides __init__ and inherits the other three methods from

Mortgage.

Example : Mortgage With Teaser rates

class TwoRate(Mortgage):

def __init__(self, loan, r, months, teaserRate, tea serMonths):
Mortgage.__init__(self, loan, teaserRate, months)
self.teaserMonths = teaserMonths
self.teaserRate = teaserRate
self.nextRate = r/12.0
self.legend = str(teaserRate*100)\
+ '% for ' + str(self.teaserMonths)\
+ ' months, then ' + str(r*100) + '%'

def makePayment(self):

if len(self.paid) == self.teaserMonths + 1:
self.rate = self.nextRate
self.payment = findPayment(self.owed[-1], self.rate ,
self.months - self.teaserMonths)

Mortgage.makePayment(self)

Above Code contains a third subclass of Mortgage. The class TwoRate treats the

mortgage as the concatenation of two loans, each at a different interest rate. (Since

self.paid is initialized with a 0.0, it contains one more element than the number of

payments that have been made. That’s why makePayment compares

len(self.paid) to self.teaserMonths + 1).

 Python Notes By : Hiral Pandya Page : 7 of 12

Example : Calculate Mortgages

def compareMortgages(amt, years, fixedRate, pts, pt sRate,
varRate1, varRate2, varMonths):

totMonths = years*12
fixed1 = Fixed(amt, fixedRate, totMonths)
fixed2 = FixedWithPts(amt, ptsRate, totMonths, pts)
twoRate = TwoRate(amt, varRate2, totMonths, varRate1, varMont hs)
morts = [fixed1, fixed2, twoRate]

for m in range(totMonths):

for mort in morts:
mort.makePayment()

for m in morts:
print m
print “Total payments = Rs.” + str(int(m.getTotalPa id()))

compareMortgages (amt=200000, years=30, fixedRate=0.07,

pts = 3.25, ptsRate=0.05, varRate1=0.045,
varRate2=0.095, varMonths=48)

Above Code contains a function that computes and prints the total cost of each kind of

mortgage for a sample set of parameters. It begins by creating one mortgage of each

kind. It then makes a monthly payment on each for a given number of years. Finally, it

prints the total amount of the payments made for each loan.

Out Put

Fixed, 7.0%
Total payments = Rs. 479017

Fixed, 5.0%, 3.25 points
Total payments = Rs. 393011

4.5% for 48 months, then 9.5%
Total payments = Rs.551444

In Python, we can also add PLOTs to above examples to illustrate Graphical Mortgages.

 Python Notes By : Hiral Pandya Page : 8 of 12

� Fibonacci Sequence Revisited :

What is/are Fibonacci Numbers / Sequence? : It’s a series of numbers in which each

number (Fibonacci number) is the sum of the two preceding numbers.

The simplest is the series 1, 1, 2, 3, 5, 8, etc.

The mathematical equation describing it is Xn+2 = Xn+1 + Xn

Let’s see Python Program to find the Fibonacci series using recursion. The program takes

the number of terms and determines the Fibonacci series using recursion up to that term. 1.

Take the number of terms from the user and store it in a variable.

Problem Solution

1. Take the number of terms from the user and store it in a variable.

2. Pass the number as an argument to a recursive function named Fibonacci.

3. Define the base condition as the number to be lesser than or equal to 1.

4. Otherwise call the function recursively with the argument as the number minus 1 added

to the function called recursively with the argument as the number minus 2.

5. Use a for loop and print the returned value which is the Fibonacci series.

6. Exit.

Example

def fibonacci(n):

 if(n < 1):
 return 1
 else:
 return(fibonacci(n-1) + fibonacci(n-2))
n = int(input("Enter number of terms: "))
print("Fibonacci sequence:")
for i in range(n):
 print (fibonacci(i))

Out Put

Enter number of terms: 5
Fibonacci sequence:
1
2
3
5
8

Notice that we are computing the same values over and over again. For example

Fibonacci() gets called with 5 Five times, and each of these calls provokes Six additional

calls of Fibonacci() . It doesn’t require a genius to think that it might be a good idea to

record the value returned by the first call, and then look it up rather than compute it each

time it is needed. This is called “Memoization (to be remembered)", and is the key idea

behind dynamic programming.

 Python Notes By : Hiral Pandya Page : 9 of 12

� Dynamic programming and the 0/1 Knapsack algorithm :

What is Knapsack? : The knapsack or rucksack problem is a problem in combinatorial

optimization: Given a set of items, each with a weight and a value, determine the number of

each item to include in a collection so that the total weight is less than or equal to a given

limit and the total value is as large as possible.

Suppose we decide that an approximation is not good enough, i.e., we want the best

possible solution to this problem. Such a solution is called optimal, not surprising since we

are solving an optimization problem. As it happens, this is an instance of a classic

optimization problem, called the 0/1 knapsack problem.

The 0/1 knapsack problem can be formalized as follows:

1. Each item is represented by a pair, <value, weight>.

2. The knapsack can accommodate items with a total weight of no more than w.

3. A vector, I, of length n, represents the set of available items. Each element of the vector is

an item.

4. A vector, V, of length n, is used to indicate whether or not each item is taken by the

burglar. If V[i] = 1, item I[i] is taken. If V[i] = 0, item I[i] is not taken.

5. Find a V that maximizes

n-1

V[i]*I[i]value ∑
i=0

 subject to the constraint that

n-1

V[i]*I[i] .weight <= w ∑
i=0

Let’s see what happens if we try to implement this formulation of the problem in a

straightforward way:

1. Enumerate all possible combinations of items. That is to say, generate all subsets112

of the set of items. This is called the power set.

2. Remove all of the combinations whose weight exceeds the allowed weight.

3. From the remaining combinations choose any one whose value is the largest.

This approach will certainly find an optimal answer. However, if the original set of items is

large, it will take a very long time to run, because the number of subsets grows exceedingly

quickly with the number of items.

 Python Notes By : Hiral Pandya Page : 10 of 12

Example

class Item(object):
 def __init__(self, n, v, w):
 self.name = n
 self.value = float(v)
 self.weight = float(w)
 def getName(self):
 return self.name
 def getValue(self):
 return self.value
 def getWeight(self):
 return self.weight
 def __str__(self):
 result = '<' + self.name + ', ' + str(self .value)\
 + ', ' + str(self.weight) + '>'
 return result

def value(item):
 return item.getValue()

def weightInverse(item):
 return 1.0/item.getWeight()

def density(item):
 return item.getValue()/item.getWeight()

def buildItems():
 names = ['clock', 'painting', 'radio', 'vase', 'book', 'co mputer']
 values = [175,90,20,50,10,200]
 weights = [10,9,4,2,1,20]
 Items = []
 for i in range(len(values)):
 Items.append(Item(names[i], values[i], weig hts[i]))
 return Items

def greedy(items, maxWeight, keyFunction):
 """Assumes Items a list, maxWeight >= 0,
 keyFunction maps elements of Items to floa ts"""

itemsCopy = sorted(items, key=keyFunction, reverse = True)
result = []
totalValue = 0.0
totalWeight = 0.0
for i in range(len(itemsCopy)):

if (totalWeight + itemsCopy[i].getWeight()) <= maxW eight:
result.append(itemsCopy[i])
totalWeight += itemsCopy[i].getWeight()
totalValue += itemsCopy[i].getValue()

return (result, totalValue)

def testGreedy(items, constraint, keyFunction):
taken, val = greedy(items, constraint, keyFunction)
print (“Total value of items taken = “, val)
for item in taken:

print (“ “, item)

def testGreedys(maxWeight = 20):
items = buildItems()
print (“Use greedy by value to fill knapsack of size”, ma xWeight)
testGreedy(items, maxWeight, value)
print (“\nUse greedy by weight to fill knapsack of size”, maxWeight)
testGreedy(items, maxWeight, weightInverse)
print (“\nUse greedy by density to fill knapsack of size”, maxWeight)

 Python Notes By : Hiral Pandya Page : 11 of 12

testGreedy(items, maxWeight, density)

def getBinaryRep(n, numDigits):
"""Assumes n and numDigits are non-negative ints
 Returns a numDigits str that is a binary
 representation of n"""
result = “”
while n > 0:
 result = str(n%2) + result
 n = n//2
if len(result) > numDigits:
 raise ValueError('not enough digits')
for i in range(numDigits - len(result)):
 result = '0' + result
return result

def genPowerset(L):
"""Assumes L is a list
 Returns a list of lists that contains all possib le
 combinations of the elements of L. E.g., if
 L is [1, 2] it will return a list with elements
 [], [1], [2], and [1,2]."""
powerset = []
for i in range(0, 2**len(L)):

binStr = getBinaryRep(i, len(L))
subset = []
for j in range(len(L)):

if binStr[j] == '1':
 subset.append(L[j])

powerset.append(subset)
return powerset

def chooseBest(pset, maxWeight, getVal, getWeight):
 bestVal = 0.0
 bestSet = None

 for items in pset:
 itemsVal = 0.0
 itemsWeight = 0.0

 for item in items:
 itemsVal += getVal(item)
 itemsWeight += getWeight(item)

 if itemsWeight <= maxWeight and itemsVal > bestVal:
 bestVal = itemsVal
 bestSet = items

 return (bestSet, bestVal)

def testBest(maxWeight = 20):

 items = buildItems()
 pset = genPowerset(items)
 taken, val = chooseBest(pset, maxWeight, Item.g etValue,
 Item.getWeight)
 print (“Total value of items taken =”, val)
 for item in taken:
 print item

Above Code contains a straightforward implementation of this brute-force approach to solving the 0/1 knapsack

problem. It uses the classes and functions. There is a variant of the knapsack problem, called the fractional (or

continuous) knapsack problem, for which a greedy algorithm is guaranteed to find an optimal solution. Since the

items are infinitely divisible, it always makes sense to take as much as possible of the item with the highest

remaining value to- weight ratio. Suppose, for example, that our burglar found only three things of value in the

house: a sack of gold dust, a sack of silver dust, and a sack of raisins.

 Python Notes By : Hiral Pandya Page : 12 of 12

� Dynamic programming and divide and conquer :

Dynamic programming is based upon solving independent subproblems and then

combining those solutions. There are, however, some important differences. Divide-and-

conquer algorithms are based upon finding subproblems that are substantially smaller than

the original problem.

For example, merge sort works by dividing the problem size in half at each step. In contrast,

dynamic programming involves solving problems that are only slightly smaller than the

original problem. The efficiency of divide-and-conquer algorithms does not depend upon

structuring the algorithm so that the same problems are solved repeatedly. In contrast,

dynamic programming is efficient only when the number of distinct sub-problems is

significantly smaller than the total number of sub-problems.

In divide and conquer approach, the problem in hand, is divided into smaller sub-problems

and then each problem is solved independently. When we keep on dividing the

subproblems into even smaller sub-problems, we may eventually reach a stage where no

more division is possible. Those "atomic" smallest possible sub-problems (fractions) are

solved. The solution of all sub-problems is finally merged in order to obtain the solution of

an original problem.

Divide and conquer uses the Binary Search technique.

